手机浏览器扫描二维码访问
……
傍晚,员工宿舍内。
温穗宁拿着系统发放的特殊的考试答题笔,在一块除了她以外,谁也看不见的电子光屏上答题。
1.在下面的正方形中画两条直线,把它分成4个大小相等的图形,至少画出三种。
系统对她是有什么误解吗?
如果没记错,这应该是小学一年级的数学题吧,这可难不倒她。
第一种,连接正方形的两条对角线;
第二种,连接正方形对边的中点;
第三种,连接正方形对边的四分之一点。
只要两条直线经过正方形的中心点,且两条直线互相垂直,逐步旋转,可以有无数种分法。
似乎是得知了温穗宁的想法,第二题的难度飙升。
2.如图,在平面直角坐标系xoy中,点B(0,4),点a是x轴正半轴上的动点,以AB为边,在第一象限作矩形ABCD,矩形ABCD的面积为24,则OC的最大值为…?
温穗宁找了一圈没看到图片,不禁在脑海跟001吐槽。
温穗宁:[图片在哪儿?你这么严谨的系统也出错啦?]
001:[请不要质疑本系统的严谨性。
题目的图形需要宿主自己动手画,这是为了锻炼你的思维能力。
]
温穗宁:?
好好好,这么搞是吧。
温穗宁骂骂咧咧的在题目下方自己画了个草图。
这是一道非常经典的求最值的问题,温穗宁一眼就看出来了,但是,她,不会做。
001,你不讲武德!
有你这么上难度的吗?!
但为了不被电击,温穗宁还是耐着性子,思考了半个小时,才做出来了这道题目。
B为定点,A为动点,已知OA长度为4,矩形ABCD面积为24。
过B点做y轴的垂线,交CD于E点,连接BE、AE,得到一个三角形ABE,根据面积公式,可以得出三角形ABE的面积为12。
∵S△ABE=12×S△ABCD=12
S△ABE=12×BE×OB=12
∴BE=6,E点的坐标为(6,4)
取BE中点F,连接CF、OF,F点的坐标为(3,4)。
根据斜边中线定理,可以得出CF=12×BE=3,根据勾股定理,可以得出OF=5。
当O、F、C共线时,OC为最大值,所以OC的最大值为8。
官场如战场,尔虞我诈,勾心斗角,可陆浩时刻谨记,做官就要做个好官,要有两颗心,一颗善心,一颗责任心。且看陆浩一个最偏远乡镇的基层公务员,如何在没有硝烟的权利游戏里一路绿灯,两袖清风,不畏权贵,官运亨通。...
阴错阳差中,仕途无望的宋立海认识了神秘女子,从此一步步走上了权力巅峰...
周胜利大学毕业后,因接收单位人事处长的一次失误延误了时机,被分配到偏远乡镇农技站。他立志做一名助力农民群众致富的农业技术人员,却因为一系列的变故误打误撞进入了仕途,调岗离任,明升暗降,一路沉浮,直至权力巅峰...
要想从政呢,就要步步高,一步跟不上,步步跟不上,要有关键的人在关键的时刻替你说上关键的话,否则,这仕途也就猴拉稀了...
朝中无人莫做官,重活一世的秦毅不是这样认为。机遇来自于谋划,时时为朝前铺路,才能高官极品!上一世,含冤入狱,前途尽毁,孤独终老。这一世,从救省城下来的女干部开始,抓住每一个机遇,加官进爵,弥补遗憾,扶摇直上九万里!...
妻子背叛,对方是县里如日中天的副县长!一个离奇的梦境,让李胜平拥有了扭转局势的手段!即将被发配往全县最穷的乡镇!李胜平奋起反击!当他将对手踩在脚下的时候,这才发现,这一切不过只是冰山一角!斗争才刚刚开始!...